1) The reflexive axiom of
equality:
x = x, for ay real number
"x"
Example 100 = 100
2) The
symmetric axiome of equality:
If x = y, then y =
x
Example: If 1 + 4 = 5, then 5 = 1 +
4
3) The transitive axiom of
equality:
If x = y and y = z, then x =
z
The axioms of order:
1)
Translation invariance of order: x < y => x + z < y + z, for any x
and y real numbers
Example: 2 < 3 => 2 + 4
< 3 + 4 <=> 6 < 7
2) The
transitivity axiome of order: x < y and y < z => x <
z
3) The trichotomy axiome of order: x < y and y
< x => x = y
4) The scaling axiome of
order:
If x < y and z> 0 => x*z
< y*z
No comments:
Post a Comment