The expression you have provided is true because sin 2x =
2*sin x*cos x and cos 2x = (cos x)^2 - (sin x)^2
Let start
with (cos x + sin x)/(cos x - sin x)
multiply the numerator
and denominator by (cos x + sin x)
=> (cos x + sin
x)(cos x + sin x)/(cos x - sin x)(cos x + sin x)
=>
(cos x + sin x)^2/(cos x)^2 - (sin x)^2
=> [(cos
x)^2 + 2*sin x*cos x + (sin x)^2]/cos 2x
=> (1 + sin
2x)/cos 2x
This proves that (cos x + sin
x)/(cos x - sin x) = (1 + sin 2x)/cos 2x
No comments:
Post a Comment