The definite integral of the function will be evaluated
with the help of Leibniz Newton formula.
Int x*cos 3x dx =
F(pi/2) - F(0) (x = 0 and x = pi/2 are the limits of
integration)
We'll solve the integral by
parts:
Int udv = u*v - Int vdu
(*)
Let u = x => du =
dx
Let dv = cos 3x dx => v = (sin
3x)/3
We'll apply the formula
(*):
Int x*cos 3x dx = x*(sin 3x)/3 - Int (sin
3x)dx/3
Int x*cos 3x dx = x*(sin 3x)/3 + (cos
3x)/9
But Int x*cos 3x dx = F(pi/2) -
F(0)
F(pi/2) = (pi/2)*(sin 3pi/2)/3 + (cos
3pi/2)/9
F(pi/2) = - pi/6 +
0
F(pi/2) = - pi/6
F(0) = 0 +
(cos 0)/9
F(0) = 1/9
But Int
x*cos 3x dx = - pi/6 - 1/9
The definite
integral of the function y=x*cos 3x is: Int x*cos 3x dx = - pi/6 -
1/9.
No comments:
Post a Comment