tan(x) = sin(x+2pi) /
cos(x-2pi)
We will use trigonometric identities to prove
the equality.
We know
that:
sin(a+ b) = sina*cosb+
cosa*sinb
==> sin(x+2pi) = sinx*cos2pi +
cosx*sin2pi
==> sin(x+2pi) = sinx*1 + cosx* 0 =
sinx,..........(1)
Now we know
that:
cos(a-b) = cosa*cosb-
sina*sinb
==> cos(x-2pi) = cosx*cos2pi +
sinx*sin2pi
= cosx*1 + sinx*0 =
cosx.............(2)
Now, from (1) and (2) we conclude
that:
sin(x+2pi)/cos(x-2pi) = sinx/cos x = tanx
.........q.e.d
==> Then we prove that
tanx = sin(x+2pi)/cos(x-2pi)
No comments:
Post a Comment