use t = ln(x) so dt = 1/x dx x = e^t, so e^t dt = dx
so
integral(cos^2(ln x) dx) = integral(cos^2(t) e^t
dt)
and cos^2(t) = 1/2cos(2t) +
1/2
integral(cos^2(ln(x)) dx) = 1/2 integral((cos(2t) +
1)e^t dt)
= 1/2 integral(e^t cos(2t) dt) + 1/2 integral(e^t
dt)
Integrate(e^t cos(2t) dt) by parts
using
u = e^t, du = e^t dt
dv
=cos(2t) dt, v = sin(2t)/2
integral(cos(2t) e^t dt) = e^t
sin(2t)/2 - integral(e^t sin(2t)/2 dt) =
= e^t sin(2t)/2 -
1/2 integrate(e^t sin(2t) dt)
integrate by parts
again,
u = e^t, du = e^t dt
and
dv = sin(2t) dt, v = -1/2
cos(2t)
to get
= e^t sin(2t)/2
- 1/2 (-1/2 e^t cos(2t) - integral(-1/2 cos(2t) e^t
dt))
integral(cos(2t) e^t dt) = e^t sin(2t)/2 + 1/4 e^t
cos(2t) - 1/4 integral(cos(2t) e^t) dt) so
Add 1/4
integral(cos(2t) e^t) dt) to both sides
5/4
integral(cos(2t) e^t dt) = e^t sin(2t)/2 + 1/4 e^t
cos(2t))
Multiply both sides by 4/5 to
get
integral(cos(2t) e^t dt) = 1/5e^t(2 sin(2t) +
cos(2t))
integral(cos^2(ln(x)) dx) = 1/2 integral(e^t
cos(2t) dt) + 1/2 integral(e^t dt)
= 1/2 (1/5 e^t(2 sin(2t)
+ cos(2t))) + 1/2 e^t + C
Substituting t = ln(x) we
get
integral(cos^2(ln(x) dx) = 1/10 x (2 sin(2 ln(x)) +
cos(2 ln(x)) + 1/2x + C
= 1/10 x (2 sin(2 ln(x)) + cos(2
ln(x)) + x/2) + C
No comments:
Post a Comment