To determine the primitive of the given function dy, we'll
calculate the indefinite integral of dy.
Int dy = Int
sqrt(25 - x^2)dx
We'll factorize by
25:
Int sqrt[25(1 - x^2/25)]dx = 5Int sqrt[1 -
(x/5)^2]dx
We'll substitute x/5 =
t.
We'll differentiate both
sides:
dx/5 = dt
dx =
5dt
5Int sqrt[1 - (x/5)^2]dx = 25 Int sqrt(1 -
t^2)dt
We'll substitute t = sin
v.
We'll differentiate both
sides:
dt = cos v dv
25 Int
sqrt(1 - (sin v)^2)cos v dv
But 1 - (sin v)^2 = (cos v)^2
(trigonometry)
25 Int sqrt(1 - (sin v)^2)cos v dv = 25 Int
sqrt[(cos v)^2]cos v dv
25 Int sqrt[(cos v)^2]cos v dv = 25
Int [(cos v)^2] dv
But (cos v)^2 = (1 + cos
2v)/2
25 Int [(cos v)^2] dv = 25 Int (1 + cos 2v)/2
dv
25 Int (1 + cos 2v)/2 dv = (25/2) Int dv + (25/2) Int
cos 2v dv
25 Int (1 + cos 2v)/2 dv = 25*v/2 + 25*sin 2v/4 +
C
Int f(x)dx = 25*v/2 + 25*sin 2v/4 +
C
The primitive function is y =
(25/2)*{[arcsin (x/5)] + sin [2arcsin (x/5)]/2} +
C.
No comments:
Post a Comment