The identity we have to prove is: cos x/(sec x - 1) - cos
x/ tan^2x = cot^2x
Let's start from the left hand
side
cos x/(sec x - 1) - cos x / (tan
x)^2
use sec x = 1/cos x and tan x = sin x/ cos
x
=> cos x/(1/cos x - 1) - cos x*(cos x)^2/(sin
x)^2
=> (cos x)^2/(1 - cos x) - cos x*(cos x)^2/(sin
x)^2
=> [(cos x)^2*sin x^2 - (cos x)^3 + (cos
x)^4]/(sin x)^2(1 - cos x)
=>[(cos x)^2(1 - (cos
x)^2) - (cos x)^3 + (cos x)^4]/(sin x)^2(1 - cos
x)
=>[(cos x)^2 - (cos x)^4) - (cos x)^3 + (cos
x)^4]/(sin x)^2(1 - cos x)
=>[(cos x)^2 - (cos
x)^3](sin x)^2(1 - cos x)
=>(cos x)^2(1 - cos
x)/(sin x)^2(1 - cos x)
=> (cos x/ sin
x)^2
=> (cot x)^2
which
is the right hand side.
This proves: cos
x/(sec x - 1) - cos x/ tan^2x = cot^2x
No comments:
Post a Comment