To determine the antiderivative of a given function, we'll
have to calculate the indefinite integral of that
function.
We'll apply integration by parts. First, we'll
recall the formula:
Int udv = u*v - Int
vdu
Let u = arcsin x => du =
dx/sqrt(1-x^2)
Let dv = xdx/sqrt(1-x^2) => v =
-sqrt(1 - x^2)
Int x*arcsin x dx/sqrt(1-x^2) = -(arcsin
x)*sqrt(1 - x^2) + Intsqrt(1 - x^2)dx/sqrt(1-x^2)
Int
x*arcsin x dx/sqrt(1-x^2) = -(arcsin x)*sqrt(1 - x^2) + Int
dx
Int x*arcsin x dx/sqrt(1-x^2) = -(arcsin x)*sqrt(1 -
x^2) + x + C
The antiderivative of the given
function f(x) is: F(x) = -(arcsin x)*sqrt(1 - x^2) + x +
C.
No comments:
Post a Comment