f(x)= x^2 + 2x + 1
g(x) = x-
2011
We need to verify if fog(x) is zero or
positive.
Let us determine the function fog(x) =
f(g(x))
==> f(g(x))= f(x-2011) = (x-2011)^2 +
2(x-2011)+1
==> f(g(x)) = x^2 - 4022x + 2011^2 + 2x
- 4022 + 1
==> f(g(x))= x^2 - 4020x +
4040100
==> f(g(x))=
(x-2010)^2
We notice that (x-2010)^2 is always positive or
zero when x=2010
Now we proved that f(g(x) > 0 for
all R-{ 2010}
Also f(g(x))= = 0 for x =
2010.
Then f(g(x)) >= 0
No comments:
Post a Comment