We have to prove that 1 - (sin^6 x + cos^6 x) = 3(sin x)^2
(cos x)^2
Let's start with the left hand
side.
1 - [(sin x)^6 + (cos
x)^6]
=> (sin x)^2 + (cos x)^2 - (sin x)^6 - (cos
x)^6
=> (sin x)^2 - (sin x)^6 + (cos x)^2 - (cos
x)^6
=> (sin x)^2(1 - (sin x)^4) + (cos x)^2(1 -
(cos x)^4)
=> (sin x)^2(1 + (sin x)^2)(1 - (sin
x)^2) + (cos x)^2(1 + (cos x)^2)(1 - (cos x)^2)
=>
(sin x^2)(1 + (sin x)^2)(cos x)^2 + (cos x)^2(1 + (cos x)^2)(sin
x^2)
=> (sin x^2)(cos x)^2(1 + (sin x^2) + 1 + (cos
x)^2)
=> (sin x^2)(cos x)^2(1 + 1 +
1)
=> 3(sin x^2)(cos
x)^2
which is the right hand
side.
This proves : 1 - (sin^6 x + cos^6 x) =
3(sin x)^2 (cos x)^2
No comments:
Post a Comment