I'm going to use x instead of
theta.
It is given that cosec x - sin x = b and sec x - cos
x = a.
We need to find sin x *
cos
sec x = 1/cos x and cosec x = 1/ sin
x
cosec x - sin x = b and sec x - cos x =
a
=> 1/ sin x - sin x = b and 1/cos x - cos x =
a
b = [1 - (sin x)^2]/sin x and a = [1 - (cos x)^2]/cos
x
=> b = (cos x)^2 / sin x and a = (sin x)^2/ cos
x
b *a = [(cos x)^2 / sin x]*[(sin x)^2/ cos
x]
=> [(cos x)^2 *(sin x)^2 / sin x*cos
x]
=> sin x * cos
x
This gives us (sin x)*(cos x) =
a*b
No comments:
Post a Comment