Since the added trigonometric functions are matching,
we'll apply the identity:
sin a + sin b = 2 sin
[(a+b)/2]*cos[(a-b)/2]
We'll add the first and the 3rd term
from the left side:
sin x + sin 5x = 2 sin
[(x+5x)/2]*cos[(x-5x)/2]
sin x + sin 5x = 2 sin
3x*cos(-2x)
Since the cosine function is even,we'll
get:
sin x + sin 5x = 2 sin 3x*cos
2x
We'll re-write the
expression:
sin 3x + 2 sin 3x*cos 2x =
(1+2cos2x)*sin3x
We'll factorize by sin 3x to the left
side:
sin 3x*(1 + 2cos 2x) =
(1+2cos2x)*sin3x
We notice that managing the
left side, we'll get LHS = RHS , therefore the given identity sin x + sin 3x + sin 5x =
(1+2cos2x)*sin3x is verified.
No comments:
Post a Comment