We need to prove that :
cosx/
(1-sinc) - sec x = tanx
We will start from the left side
and prove the right side.
First, we know that sec x =
1/cosx
==> cosx / (1-sinx) -
1/cosx
==> Now we will rewrite using a common
denominator cosx(1-sinx)
==> ( cosx*cosx - (1-sinx)
/ cosx(1-sinx)
==> (cos^2 x + sinx -1) /
cosx(1-sinx)
==> We know that cos^2 x = 1- sin^2
x
==> (1-sin^2 x + sinx -1 ) /
cosx(1-sinx)
==> Now we will
factor:
==> (1-sinx)(1+sinx) - (1-sinx) /
cosx(1-sinx)
We will factor
(1-sinx)
==> (1-sinx)[ (1+sinx -1) /
cosx(1-sinx)
Now we will reduce
1-sinx
==> sinx/ cosx =
tanx...........q.e.d
Then we proved that
cosx/ (1-sinx) - sec x = tanx.
No comments:
Post a Comment