To detemrine the antiderivative, we'll have to calculate
the indefinite integral of the given function.
We'll write
the integrand (cos x)^3 = (cos x)^2*cos x.
Int (cos
x)^2*cos x dx = Int [1-(sin x)^2]*cos x dx
We'll replace
sin x by t:
sin x = t
cos x dx
= dt
Int [1-(sin x)^2]*cos x dx = Int (1 -
t^2)dt
Int (1 - t^2)dt = Int dt - Int
t^2dt
Int (1 - t^2)dt= t - t^3/3 +
C
Int (cos x)^2*cos x dx = sin x - (sin x)^3/3 +
C
The requested antiderivative is: F(x) = sin
x - (sin x)^3/3 + C.
No comments:
Post a Comment