First, we'll factorize by
tan(a+b):
tan(a+b)(1 - tan a*tan b) - tan a - tan b =
0
We'll move tan a and tan b to the right
side:
tan(a+b)(1 - tan a*tan b) = tan a + tan
b
We'll divide by (1 - tan a*tan
b):
tan(a+b) = (tan a + tan b)/(1 - tan a*tan
b)
But the function tangent tan (a+b) is the
ratio:
tan(a+b) =
sin(a+b)/cos(a+b)
We'll write the formulas for the sine and
cosine of the sum of angles a and b:
sin(a+b) = sina*cosb +
sinb*cosa
cos(a+b) = cosa*cosb -
sina*sinb
We'll substitute sin(a+b) and cos(a+b) by their
formulas:
tan(a+b) = (sina*cosb + sinb*cosa)/(cosa*cosb -
sina*sinb)
We'll factorize by
cosa*cosb:
tan(a+b) =cosa*cosb*[(sina*cosb/cosa*cosb) +
(sinb*cosa/cosa*cosb)]/cosa*cosb*[1 -
(sina*sinb/cosa*cosb)]
We'll simplify and we'll
get:
tan(a+b) = (sina/cos a + sinb/cos b)/(1 - tan a*tan
b)
tan(a+b) = (tan a + tan b)/(1 - tan a*tan b)
The identity tan(a+b)(1 - tan
a*tan b) - tan a - tan b = 0 is verified.
No comments:
Post a Comment