To calculate the indefinite integral of the given
function, we'll have to recall the half angle
identity:
(cos 3x)^2 = (1 + cos
6x)/2
We'll evaluate the indefinite
integral:
Int (cos 3x)^2dx = Int (1 + cos
6x)dx/2
We'll apply the property of integral to be
additive:
Int (1 + cos 6x)dx/2 = Int dx/2 + Int cos 6x
dx/2
Int (1 + cos 6x)dx/2 = x/2 + sin 6x/12 +
C
The indefinite integral of the given
function is: F(x)=x/2 + sin 6x/12 + C.
No comments:
Post a Comment