Monday, November 1, 2010

Find the area of the circle x^2+y^2 - 2x + 8y = 13

Given the equation of the circle is
:


x^2 + y62 - 2x + 8y = 13


We
need to find the area.


First we need to determine the
radius.


Then, we will rewrite the equation into the
standard form.


(x-a)^2 + (y-b)^2 =
r^2


To convert, we will need to complete the
square.


==> x^2 - 2x + 1 -1 + y^2 + 8y + 16 - 16 =
13


==> (x-1)^2 + (y+4)^2 = 13 + 16 +
1


==> (x-1)^2 + (y+4)^2 =
30


Then the radius is the circle is
sqrt30.


Now we will calculate the
area.


==> A = r^ 2* pi = sqrt30^2 * pi = 30*pi =
94.25


Then, the area of the circle is 30pi =
94.25 square units.

No comments:

Post a Comment

What accomplishments did Bill Clinton have as president?

Of course, Bill Clinton's presidency will be most clearly remembered for the fact that he was only the second president ever...