We'll write the rectangular form of a complex
number:
z = a + bi
a = the
real part = Re(z)
b = the imaginary part =
Im(z)
We'll raise to square both
sides:
z^2 = (a+bi)^2
z^2 =
a^2 + 2abi + b^2*i^2, but i^2 =-1
z^2 = a^2 + 2abi -
b^2
But z^2 = 2 +
6i
Comparing, we'll get:
a^2 +
2abi - b^2 = 2 + 6i
a^2 - b^2 = 2
(1)
2ab = 6
ab =
3
b = 3/a (2)
We'll substitute
(2) in (1):
a^2 - 9/a^2 =
2
We'll multiply by a^2 all
over:
a^4 - 2a^2 - 9 = 0
We'll
substitute a^2 = t
t^2 - 2t - 9 =
0
We'll apply quadratic
formula:
t1 = [2 + sqrt(4 +
36)]/2
t1 = (2+sqrt40)/2
t1 =
1+sqrt10
a^2 = 1+sqrt10
a1 =
+sqrt (1+sqrt10) and a2 = -sqrt (1+sqrt10)
b1 = 3/a1 =
3/sqrt (1+sqrt10)
b1 = 3*sqrt
(1+sqrt10)/(1+sqrt10)
b2 = -3*sqrt
(1+sqrt10)/(1+sqrt10)
The real and imaginary
parts of z are: Re(z) = {-sqrt (1+sqrt10) ; sqrt
(1+sqrt10)} and Im(z) = {-3*sqrt
(1+sqrt10)/(1+sqrt10) ; 3*sqrt
(1+sqrt10)/(1+sqrt10)}.
No comments:
Post a Comment