We have to find the value of lim x -->0 [(1/sinx) -
(1/x)]
if we substitute x = 0 we get an indeterminate form
of inf. - inf.
lim x -->0 [(1/sinx) -
(1/x)]
=> lim x -->0 [(x/x*sinx) - (sin
x/x*sin x)]
=> lim x -->0 [(x - sin
x)/x*sinx)]
substitute x = 0, we get the indeterminate form
0/0. This allows us to use l"Hopital's rule and substitute the numerator and the
denominator with their derivatives.
=> lim x
-->0 [(1 - cos x)/(x*cos x + sin x)]
substitute x =
0
=> (1- 1)/(0-0)
again
the indeterminate form 0/0, use l'Hopital's rule
again
=> lim x -->0 [(sin x)/(cos x - x*sin x
+ cos x)]
=> lim x -->0 [(sin x)/(2*cos x -
x*sin x)]
substitute x =
0
=> 0/ 2
=>
0
The value of lim x -->0 [(1/sinx) -
(1/x)] = 0
No comments:
Post a Comment