The expression we have is (1/7)*(b+w)^9 -
(1/3)*(b+w)(b^2-w^2)^4 + (b+w)^5(b^4-w^4)
Simplify the
expression:
(1/7)*(b+w)^9
This
involves the use of the binomial theorem for a large value of 9. I have only given the
final result.
=>(w^9 + 9*b*w^8 + 36*b^2*w^7 +
84*b^3*w^6 + 126*b^4*w^5 + 126*b^5*w^4 +84*b^6*w^3 + 36*b^7*w^2 +
9*b^8*w+b^9)/7
Similarly -
(1/3)*(b+w)(b^2-w^2)^4
=> -(w^9 + b*w^8 - 4*b^2*w^7
- 4*b^3*w^6 + 6*b^4*w^5 + 6*b^5*w^4 - 4*b^6*w^3 - 4*b^7*w^2 +
b^8*w+b^9)/3
(b+w)^5(b^4-w^4)
=>
-w^9 - 5*b*w^8 - 10*b^2*w^7 - 10*b^3*w^6 - 4*b^4*w^5 + 4*b^5*w^4 + 10*b^6*w^3 +
10*b^7*w^2 + 5*b^8*w + b^9
Adding up the three expansions
and equating the denominator we get:
-(25*w^9 + 85*b*w^8 +
74*b^2*w^7 - 70*b^3*w^6 - 252*b^4*w^5 -
420*b^5*w^4 - 490*b^6*w^3 - 346*b^7*w^2 - 125*b^8*w -
17*b^9)/21
The coefficient of b^5*w^4 is
20
No comments:
Post a Comment