We'll note the given relations
as:
sin x + cos y = 1/4
(1)
cos x + sin y = 1/2
(2)
We'll raise to square (1), both
sides:
(sin x + cos y)^2 =
1/16
We'll expand the
square:
(sin x)^2 + 2sinx*cosy + (cos y)^2 = 1/16
(3)
We'll raise to square (2), both
sides:
(cos x + sin y)^2 =
1/4
We'll expand the
square:
(cos x)^2 + 2cos x*sin y + (sin y)^2 = 1/4
(4)
We'll add (3) + (4):
(sin
x)^2 + 2sinx*cosy + (cos y)^2 + (cos x)^2 + 2cos x*sin y + (sin y)^2 = 1/16 +
1/4
But, from the fundamental formula of trigonometry,
we'll get:
(sin ax)^2 + (cos x)^2 =
1
(sin y)^2 + (cos y)^2 = 1
1
+ 1 + 2(sinx*cosy + cos x*sin y) = 5/16
We'll subtract 2
both sides:
2(sinx*cosy + cos x*sin y) = 5/16 -
2
2(sinx*cosy + cos x*sin y) =
-27/16
We'll divide by
2:
sinx*cosy + cos x*sin y =
-27/32
But the sum from the left side represents the
expanding of sin(x+y):
sin (x+y) = sinx*cosy + cos x*sin
y
The value of the sine of the sum of angles
x and y is: sin (x+y) =
-27/32
No comments:
Post a Comment