We'll have to determine the primitive of the given
function and we'll do it by integrating f'(x).
The first
step is to replace x by pi/4 - t
x = pi/4 -
t
Differentiating, we'll
have:
dx = -dt
I = Int
ln(1+tanx)dx = -Int ln[1+tan (pi/4 - t)]dt
But tan (pi/4 -
t) = (tan pi/4 - tan t)/(1 + tan (pi/4)*tan t)
tan (pi/4 -
t) = (1 - tan t)/(1+tan t)
We'll add 1 both
sides:
1 + tan (pi/4 - t) = 1 + (1 - tan t)/(1+tan
t)
1 + tan (pi/4 - t) = 2/(1 + tan
t)
We'll take logarithm function both
sides:
ln [1 + tan (pi/4 - t)] = ln [2/(1 + tan
t)]
ln [2/(1 + tan t)] = ln 2 - ln (1 + tan
t)
We'll integrate:
Int [2/(1
+ tan t)]dt = -Int ln 2 dt + Int ln (1 + tan t)dt
I = Int
ln 2 dt - Int ln (1 + tan t)dt
But Int ln (1 + tan t)dt =
I
I = Int ln 2 dt - I
2I =(ln
2)*t
I = [t*(ln 2)]/2 + C
I =
(pi/4 - x)*ln 2/2 + c
I = (pi/8)*ln 2 - x*(ln 2)/2 +
C
The function f(x) is: f(x) = (pi/8)*ln 2 -
x*(ln 2)/2 + C
No comments:
Post a Comment