To determine the antiderivative of the product f(x)*cos x,
we'll have to determine the indefinite integral of f(x)*cos
x.
Int f(x)*cos x dx = Int ln[1+(sin x)^2]*cos x
dx
We'll replace sin x by
t:
sin x = t
We'll
differentiate both sides:
cos x dx =
dt
We'll re-write the
integral:
Int
ln[1+(t)^2]dt
We'll integrate by parts using the
formula:
Int udv = u*v - Int
vdu
u = ln(1+t^2) => du = 2t
dt/(1+t^2)
dv = dt => v =
t
Int ln[1+(t)^2]dt = t*ln(1+t^2) - Int 2t^2
dt/(1+t^2)
Int 2t^2 dt/(1+t^2) = 2 Int dt - 2 Int
dt/(1+t^2)
Int 2t^2 dt/(1+t^2) = 2t - 2 arctan t +
C
The antiderivative of the given function
is:
Int ln[1+(t)^2]dt = t*ln(1+t^2) - 2t + 2 arctan t +
C
Int ln[1+(sin x)^2]*cos x dx =sin
x*ln[1+(sin x)^2] - 2sin x + 2*arctan (sin x) + C
No comments:
Post a Comment