Wednesday, June 20, 2012

If alpha and beta are different complex number whit modulus of beta = 1, then find the modulus of ((beta - alpha)(1)-( conjugate of...

You need to consider the complex numbers ` alpha` and
`beta,` such that:


`alpha = a + b*i`


`beta = c + d*i`


The problem
provides the information that the absolute value of the complex number `beta` is 1, such
that:


`|beta| = sqrt(c^2 + d^2) = 1 => c^2 + d^2 = 1
=> c = 0 , d = 1 or c = 1, d = 0.`


You need to
evaluate `|(beta - alpha)/(1 - bar alpha*beta)|` , such
that:


`|(beta - alpha)/(1 - bar alpha*beta)| = |(beta -
alpha)|/|(1 - bar alpha*beta)|`


You need to evaluate beta -
alpha, such that:


`beta - alpha = (a - c) + (b - d)*i
=> |(beta - alpha)| = sqrt((a - c)^2 + (b -
d)^2)`


You need to evaluate 1 - bar alpha*beta, such
that:


`1 - (a - b*i)(c + d*i) = 1 - (ac + bd + i*(ad -
bc))`


`1 - (a - b*i)(c + d*i) = 1 - (ac + bd) - i*(ad -
bc)`


`|1 - (a - b*i)(c + d*i)| = sqrt((1 - (ac + bd))^2 +
(ad - bc)^2)`


`|(beta - alpha)|/|(1 - bar alpha*beta)| =
(sqrt((a - c)^2 + (b - d)^2))/(sqrt((1 - (ac + bd))^2 + (ad -
bc)^2))`


Considering `c = 0 , d = 1` ,
yields:


`|(beta - alpha)|/|(1 - bar alpha*beta)| =
(sqrt(a^2 + (b - 1)^2))/(sqrt((1 - b)^2 + a^2)) =
1`


Considering `d = 0 , c = 1` ,
yields:


`|(beta - alpha)|/|(1 - bar alpha*beta)| = (sqrt((a
- 1)^2 + b^2))/(sqrt((1 - a)^2 + (b)^2)) =
1`


Hence, evaluating the absolute value of
the complex number `|(beta - alpha)|/|(1 - bar alpha*beta)|` , under the given
conditions, yields
`|(beta - alpha)|/|(1 - bar alpha*beta)| = 1.`

No comments:

Post a Comment

What accomplishments did Bill Clinton have as president?

Of course, Bill Clinton's presidency will be most clearly remembered for the fact that he was only the second president ever...