We'll recall the fact that sin (arcsin x) = x and sin
(arccos x) = sqrt(1 - x^2)
Comparing, we'll
get:
sin (arcsin(1/2))= 1/2
(1)
sin (arccos (sqrt3)/2) = sqrt[1 -
(3/2)^2]
sin (arccos (sqrt3)/2) = sqrt (1 -
3/4)
sin (arccos (sqrt3)/2) = sqrt
[(4-3)/4]
sin (arccos (sqrt3)/2) = sqrt
(1/4)
sin (arccos (sqrt3)/2) = 1/2
(2)
We'll add (1) + (2):
sin
(arcsin(1/2)) + sin (arccos (sqrt3)/2) = 1/2 + 1/2
sin
(arcsin(1/2)) + sin (arccos (sqrt3)/2) =
1
The value of the given expression is sin
(arcsin(1/2)) + sin (arccos (sqrt3)/2) = 1.
No comments:
Post a Comment