To determine the primitive function y, we'll have to use
the indefinite integral:
dy = sqrt(e^x -
1)dx
We'll integrate both
sides:
Int dy = Int sqrt(e^x -
1)dx
We'll use substitution technique and we'll replace
sqrt(e^x - 1) by t:
sqrt(e^x - 1) = t => e^x = t^2 +
1
We'll differentiate both sides, with respect to
x:
e^x dx/2sqrt(e^x - 1) =
dt
e^x dx = 2sqrt(e^x -
1)dt
dx = 2sqrt(e^x -
1)dt/e^x
dx = 2tdt/(t^2 +
1)
We'll re-write the
integral:
Int sqrt(e^x - 1)dx = Int 2t^2 dt /(t^2 +
1)
Int 2t^2 dt /(t^2 + 1) = 2Int (t^2 + 1 - 1) dt /(t^2 +
1)
Int 2t^2 dt /(t^2 + 1) = 2Int dt - 2Int dt /(t^2 +
1)
Int 2t^2 dt /(t^2 + 1) = 2t - 2arctan t +
C
Int sqrt(e^x - 1)dx = 2sqrt(e^x - 1) - 2arctansqrt(e^x -
1) + C
The requested primitive function y
is: y=Int sqrt(e^x - 1)dx = 2sqrt(e^x - 1) - 2arctansqrt(e^x - 1) +
C.
No comments:
Post a Comment