To determine the primitive function y, we'll have to
compute the indefinite integral of the function.
If dy/dx =
1/sqrt(36-x^2) => dy = dx/sqrt[(6)^2 - x^2]
We'll
integrate both sides:
Int dy = Int dx/sqrt[(6)^2 -
x^2]
We'll recognize the
formula:
Int dx/sqrt(a^2 - x^2) = arcsin (x/a) +
C
Let a = 6 => Int dx/sqrt[(6)^2 - x^2] = arcsin
(x/6) + C
The required function y, when dy/dx
= 1/sqrt(36-x^2), is: y = arcsin (x/6) + C.
No comments:
Post a Comment