You need to use the fact that the tangent function is a
rational function such that:
Using
the following formulas and
x*cos y - sin x* sin y
(cos^-1(4/5)+sin^-1(1)) = (sin (cos^-1(4/5)+sin^-1(1)))/(cos
(cos^-1(4/5)+sin^-1(1)))
(sin (cos^-1(4/5))*cos(sin^-1(1)) +
sin(sin^-1(1))*cos(cos^-1(4/5)))/(cos(cos^-1(4/5))*cos(sin^-1(1)) -
sin(sin^-1(1))*sin(cos^-1(4/5)))
Use
and
and cos(sin ^-1 a) = sqrt(1 - a^2).
(cos^-1(4/5)+sin^-1(1)) = (sqrt((1 - 16/25)(1 - 1)) + 1*(4/5))/((4/5)*sqrt(1-1) -
1*sqrt(1 - 16/25))
4/5)/(0 - sqrt(9/25))
(4/5)/(-3/5)
-4/3
Hence, evaluating the tangent of the
sum of inverse trigonometric functions yields
No comments:
Post a Comment