The problem requires the double angle
identity:
cos 2x = 2 (cos x)^2 -
1
We'll determine cos x, applying the Pythagorean
identity:
(cos x)^2 + (sin x)^2 =
1
(cos x)^2 = 1 - (sin
x)^2
(cos x)^2 = 1 - 1/9
(cos
x)^2 = (9-1)/9
(cos x)^2 =
8/9
We'll replace the value of (cos x)^2 into the double
angle identity:
cos 2x = 2*8/9 -
1
cos 2x = (16-9)/9
cos 2x =
7/9
The value of cos 2x, if sin x = 1/3, is:
cos 2x = 7/9.
No comments:
Post a Comment