We'll substitute the difference of the squares from
numerator by the product: (1 - cos x)(1 + cos x)
lim (1 -
cos x)(1 + cos x)/x^2 = lim [(1 - cos x)/x^2]*lim (1 + cos
x)
We'll use the half angle
identity:
1 - cos x = 2(sin
x/2)^2
lim 2(sin x/2)^2/x^2*lim (1 + cos x)=2*lim
[sin(x/2)/x]*lim [sin(x/2)/x]*lim (1 + cos x)
We'll create
the elementary limit:
lim sin x/x =
1
lim [sin(x/2)/x] = lim [sin(x/2)/2*x/2] =
(1/2)*lim[sin(x/2)/(x/2)]
lim [sin(x/2)/x] =
1/2
The limit will become:
lim
(1 - cos x)(1 + cos x)/x^2 = 2*(1/2)*(1/2)*(1+cos 0)
lim (1
- cos x)(1 + cos x)/x^2 = (1/2)*(1+1)
lim (1 - cos x)(1 +
cos x)/x^2 = 1
The requested limit of the
function is: lim (1 - cos x)(1 + cos x)/x^2 = 1.
No comments:
Post a Comment