We'll shift 0.0001 to the right
side:
x^(lg^3 x-5*lgx) =
0.0001
We'll take decimal logarithms both
sides:
lg [x^((lg x)^3-5*lgx)] = lg
0.0001
We'll use the power property of
logarithms:
((lg x)^3 -5*lgx)*lg x = lg
10^(-4)
We'll remove the
brackets:
(lg x)^4 - 5*(lg x)^2 =
-4
(lg x)^4 - 5*(lg x)^2 + 4 =
0
We'll replace (lg x)^2 by
t:
t^2 - 5t + 4 = 0
t1 = 4 and
t2 = 1
(lg x)^2 = t1 <=> (lg x)^2=4 =>
lg x = 2 or lg x = -2
lg x = 2 => x = 10^2 =>
x = 100
lg x = -2 => x = 10^(-2) = 1/100 =
0.01
(lg x)^2 = t2 <=> (lg x)^2=1 =>
lg x = 1 or lg x = -1
lg x = 1 => x =
10
lg x = -1 => x = 10^(-1) => x = 1/10
=> x = 0.1
The solutions of the
equation are: {0.01 , 0.1 , 10 , 100}.
No comments:
Post a Comment