We'll use the property of multiplication to be
distributive over addition:
(2+i)(3-2i) = 2*(3-2i) +
i*(3-2i)
(2+i)(3-2i) = 6 - 4i + 3i -
2i^2
(2+i)(3-2i) = 6 - i -
2i^2
But i^2 = -1:
(2+i)(3-2i)
= 6 - i + 2
(2+i)(3-2i) = 8 - i
(1)
We'll calculate the 2nd
product:
(1-2i)(2-i) = 1*(2-i) -
2i*(2-i)
(1-2i)(2-i) = 2 - i - 4i +
2i^2
(1-2i)(2-i) = 2 - 5i -
2
(1-2i)(2-i) = -5i (2)
We'll
subtract (2) from (1):
8 - i - (5i) = 8 - i + 5i = 8 +
4i
The result of difference is: (2+i)(3-2i) -
(1-2i)(2-i) = 8 + 4i.
No comments:
Post a Comment