We have to show that cos A + cos B + cos C + cos(A+B+C) =
4*cos(A+B)/2*cos(B+C)/2*cos(C+A)/2
4*[cos(A+B)/2]*[cos(B+C)/2]*[cos(C+A)/2]
use
cos x*cos y = (cos(x+y)+cos(x-y))/2
=>
4*[cos(A+B+B+C)/2 + cos(A+B-B-C)/2]/2*cos(C+A)/2
=>
2*[cos(A+2B+C)/2 + cos(A-C)/2]cos(C+A)/2
=>
2*[cos(A+2B+C)/2][cos(C+A)/2]+2*[cos(A-C)/2][cos(C+A)/2]
=>
2*[cos(A+2B+C+C+A)/2 + cos(A+2B+C-C-A)/2]/2 + 2*[cos(A -C+C+A)/2 +
cos(A-C-C-A)/2]/2
=> 2*[cos(2A+2B+2C)/2 +
cos(2B)/2]/2 + 2*[cos(2A)/2 + cos(-2C)/2]/2
=>
cos(A+B+C) + cos(B) + cos(A) + cos(-C)
use the relation cos
x = cos(-x)
=> cos A + cos B + cos C + cos (A + B +
C)
This proves that cos A + cos B + cos C + cos(A+B+C) =
4*cos(A+B)/2*cos(B+C)/2*cos(C+A)/2
No comments:
Post a Comment