An exponential equation is one of the form y = a*b^x,
where a is the initial value of y when x = 0 and it increases at a non-linear rate. The
value of y increases by the factor b, also called the base, for every unit increase in
x.
It is often required to determine what the value of x
should be for y to take on a particular value or if the value of y is known, what the
corresponding value of x is. Examples of this could include the time required for a
certain radioactive substance to decay till a particular fraction remains or how long
will it take the population of an organism that grows at an exponential rate to reach a
certain number.
To solve for values of x, the use of
logarithms makes the process very easy. The properties of logarithms that helps in this
are log (a^b) = b*log a and log (a*b) = log a + log b.
For
an exponential equation y = a*b^x, we take the log of both the
sides
=> log y = log
(a*b^x)
=> log y = log a + log
b^x
=> log y = log a + x*log
b
=> x = (log y - log a)/log
b
(If the base b is "e," ln is usually
used.)
Now, we have the value of x in the form of
logarithms the values of which are available in standard
tables.
Exponential equations are converted
to logarithmic equations to determine the variable x in an easy
manner.
No comments:
Post a Comment