The formula that contains radical and it gives the area of
a triangle is called Heron's formula.
S =
sqrt[p(p-a)(p-b)(p-c)]
p = half perimeter of
triangle
p = (a+b+c)/2
a,b,c
are the lengths of the sides of triangle
a = sqrt[(xC -
xB)^2 + (yC - yB)^2]
a = sqrt(1 +
4)
a = sqrt5
b = sqrt[(xC -
xA)^2 + (yC - yA)^2]
b = sqrt(4 +
9)
b = sqrt13
c = sqrt[(xA -
xB)^2 + (yA - yB)^2]
c = sqrt(1 +
1)
c = sqrt2
S =
sqrt{[(sqrt2+sqrt5+sqrt13)/2]*((sqrt2+sqrt5+sqrt13)/2-sqrt5)*((sqrt2+sqrt5+sqrt13)/2-sqrt13)*((sqrt2+sqrt5+sqrt13)/2-sqrt2)]}
S
=
sqrt{[(sqrt2+sqrt5+sqrt13)/2]*[(sqrt2-sqrt5+sqrt13)/2]*[(sqrt2+sqrt5-sqrt13)/2]*[(-sqrt2+sqrt5+sqrt13)/2]
S
=
{sqrt[(sqrt2+sqrt5+sqrt13)*(sqrt2-sqrt5+sqrt13)*(sqrt2+sqrt5-sqrt13)*(-sqrt2+sqrt5+sqrt13)]}/4
No comments:
Post a Comment