We have to find the value of (cos x + i*sin x)/(cos y -
i*sin y) given that x + y = pi
(cos x + i*sin x)/(cos y -
i*sin y)
=> (cos x + i*sin x)(cos y + i*sin y)/(cos
y - i*sin y)(cos y + i*sin y)
=> (cos x + i*sin
x)(cos y + i*sin y)/((cos y)^2 + (sin y)^2)
=> cos
x*cos y + i*sin x*cos y + i*cos x*sin y +i^2*sin x*sin
y
=> cos x*cos y - sin x*sin y + i*(sin x*cos y +
cos x*sin y)
=> cos (x + y) + i*(sin x +
y)
=> cos pi + i*sin
pi
=> -1 +
i*0
=>
-1
The ratio is equal to
-1.
No comments:
Post a Comment