We'll recall the definition of the cotangent
function:
cot x = cos x/sin
x
We know, from enunciation, that cot x =
1/3
We'll apply the Pythagorean
identity:
(cot x)^2 + 1 = 1/(sin
x)^2
(sin x)^2*[(cot x)^2 + 1] =
1
(sin x)^2 = 1/[(cot x)^2 +
1]
sin x = +1/sqrt[(cot x)^2 + 1] or sin x = -1/sqrt[(cot
x)^2 + 1]
sin x = 1/sqrt[(1/3)^2 +
1]
sin x = 1/sqrt [(1+9)/9] => sin x = 1/sqrt (10/9)
=> sin x = 3/sqrt 10 or sin x = -3/sqrt
10
We notice that x belongs to the 1st
quadrant, therefore, the value of the sine function is positive:sin x = 3*sqrt
10/10.
No comments:
Post a Comment