To solve the indefinite integral, we'll replace ln x by
t:
ln x = t
We'll
differentiate both sides:
dx/x =
dt
We'll re-write the integral in the new variable
t:
Int dx/x*sqrt[(lnx)^2 - 1] = Int
dt/sqrt(t^2-1)
Int dt/sqrt(t^2-1) = ln|t + sqrt(t^2-1)| +
C
The indefinite integral is: Int
dx/x*sqrt[(lnx)^2 - 1] = ln|ln x + sqrt[(lnx)^2 - 1]| +
C
No comments:
Post a Comment