We know that cos (pi/6) = (sqrt
3)/2
cos (pi/6) = cos 2*(pi/12) = 2*[cos (pi/12)]^2 -
1
=> (sqrt 3)/2 = 2*[cos (pi/12)]^2 -
1
=> 2*[cos (pi/12)]^2 = 1 + (sqrt
3)/2
=> [cos (pi/12)]^2 = 1/2 + (sqrt
3)/4
=> cos (pi/12) = sqrt [ 1/2 + (sqrt
3)/4]
The value of cos (pi/12) = sqrt [ 1/2 +
(sqrt 3)/4]
No comments:
Post a Comment