Let f(x)= 4x^3 + 16
Let F(x)
= Int f(x)
Then we are given that F(t+1) - F(t) =
31
Let us integrate
f(x).
==> F(x)= Int 4x^3 +16
dx
==> F(x)= x^4 +
16x
==> F(t+1)= (t+1)^4 +
14(t+1)
==> F(t) = t^4 +
16t
==> F(t+1) - F(t) =
31
==> (t+1)^4 + 16(t+1) - t^4 -16t =
31
==> (t+1)^4 + 16t + 16 - t^4 - 16t =
31
Reduce similar.
==>
t^4 + 4t^3+ 6t^2 +4t + 1 + 16t +16- t^4 - 16t =
31
==> 4t^3 + 6t^2 + 4t +1 + 16 =
31
==> 4t^3 + 6t^2 + 4t - 14 =
0
==> (t-1) ( 4t^2+10t+14) =
0
==> 2(t-1)(2t^2 +5t +7)=
0
==> t1= 1
==>
t2= ( -5 + sqrt(25-4*2*7) /2*2
= (-5 + sqrt-31
) / 4
= (-5/4) + sqrt31)/4 *
i
==> t2= (-5/4) - sqrt31/4
*i
Then we have 3 values for
t.
==> t= { 1, (-5/4)+sqrt31/4 *i )
, (-5/4 - sqrt31/4 *i) }
No comments:
Post a Comment