We'll apply Pythagorean
identity:
(sin x)^2 + (cos x)^2 =
1
We'll divide by (cos
x)^2:
(tan x)^2 + 1 = 1/(cos
x)^2
We'll replace tan x by
1/3
1/9 + 1 = 1/(cos x)^2
10/9
= 1/(cos x)^2 => cos x = +sqrt 9/10
Since it is not
specified what is the range of values of x, the values of cosine function may be
positive or negative.
cos x = -3sqrt10/10 or cos x =
+3sqrt10/10
sin x = sqrt (1 -
9/10)
sin x = sqrt10/10 or sin x =
-sqrt10/10
The values of sin x and cos x,
when tan x = 1/3, are: sin x = sqrt10/10 or sin x = -sqrt10/10 and cos x = -3sqrt10/10
or cos x = +3sqrt10/10.
No comments:
Post a Comment