We'll re-write what the enunciation provided in a proper
manner:
sin 2x - sin 3x =
0
We'll transform the difference of sines into a product,
to solve the equation:
sin a - sin b =
2cos[(a+b)/2]*sin[(a-b)/2]
sin 2x - sin 3x =
2cos[(2x+3x)/2]*sin[(2x-3x)/2]
sin 2x - sin 3x =
2cos[(5x)/2]*sin[(-x)/2]
We'll re-write the
equation:
2cos[(5x)/2]*sin[(-x)/2] =
0
We'll divide by
2:
cos[(5x)/2]*sin[(-x)/2] =
0
We'll cancel each
factor:
cos[(5x)/2] = 0
5x/2 =
+/-arccos 0 + 2kpi
5x/2 = +/-(pi/2) +
2kpi
5x = +/-(pi) + 4kpi
x =
+/-(pi/5) + 4kpi/5
sin[(-x)/2] =
0
x/2 = (-1)^k*arcsin 0 +
kpi
x/2 = kpi
x =
2kpi
The solutions of the equation are:
{-(pi/5) + 4kpi/5}U{(pi/5) + 4kpi/5}U{2kpi}.
No comments:
Post a Comment