To determine dy/dx, we'll have to use two rules of
differentiation: chain rule and product rule.
The product
rule states:
(f*g)' = f'*g +
f*g'
The chain rule
states;
[f(g(x))]' =
f'(g(x))*g'(x)
We'll write the product rule
first:
dy/dx = [ln(sin(3x^2-1))]'*ln(cos(3x^2-1)) +
ln(sin(3x^2-1))*[ln(cos(3x^2-1))]'
Now, we'll apply the
chain rule:
dy/dx =
6x*cos(3x^2-1)*ln(cos(3x^2-1))/(sin(3x^2-1) -
6x*sin(3x^2-1)*ln(sin(3x^2-1))/cos(3x^2-1)
dy/dx =
6x*{[cos(3x^2-1)]^2*ln(cos(3x^2-1)) -
[sin(3x^2-1)]^2*ln(sin(3x^2-1))}/sin(3x^2-1)*cos(3x^2-1)
dy/dx
= 12x*{[cos(3x^2-1)]^2*ln(cos(3x^2-1)) -
[sin(3x^2-1)]^2*ln(sin(3x^2-1))}/2*sin(3x^2-1)*cos(3x^2-1)
We've
created at denominator, the formula of sine of double
angle:
dy/dx =
12x*{[cos(3x^2-1)]^2*ln(cos(3x^2-1)) - [sin(3x^2-1)]^2*ln(sin(3x^2-1))}/ sin (6x^2 -
2)
No comments:
Post a Comment